

EST II

MATH - LEVEL 1

Date:

Test Center:

Room Number:

Student's Name:

National ID:

EST ID:

Duration: 60 minutes

40 Multiple Choice Questions

Instructions:

- Place your answers on the answer sheet. Mark only one answer for each of the multiple-choice questions.
- Avoid guessing. Your answers should reflect your overall understanding of the subject matter.
- Graphing and scientific calculators are allowed.

Question 1. The sum of three consecutive integers is 168. The second one is equal to:

- A.** 55
- B.** 56
- C.** 57
- D.** 58
- E.** 59

Question 2. If $\frac{p-3q}{4} + \frac{q}{2} = \frac{2p+q}{2} - \frac{11}{4}$, then the value of p in terms of q is:

- A.** $-\frac{1}{5q} - \frac{11}{5}$
- B.** $-\frac{1}{5q} + \frac{11}{5}$
- C.** $-q + \frac{11}{3}$
- D.** $\frac{3}{5q} - \frac{11}{5}$
- E.** $q + \frac{11}{3}$

Question 3. Let $g(x) = \frac{x^2+4}{-4x^2-5x+6}$. For which values of x is $g(x)$ undefined?

- A.** $x = -2$ and $x = -\frac{3}{4}$
- B.** $x = -2$ and $x = \frac{3}{4}$
- C.** $x = 2$ and $x = -\frac{3}{4}$
- D.** $x = 2$ and $x = \frac{3}{4}$
- E.** $x = 2$ and $x = \frac{4}{3}$

Question 4. Consider a line d of equation $2y = 3x + 5$. Line L is perpendicular to d , and T is a line parallel to L . If $A(-5, 3)$ is a point on T , then the equation of T is:

- A.** $2y - 3x = 1$
- B.** $3y - 2x = -3$
- C.** $3y - 2x = -1$
- D.** $3y + 2x = -1$
- E.** $3y + 2x = 3$

Question 5. In a geometric sequence, the 5th term is 3,200,000 and the 10th term is 1,024. What is the first term of this sequence?

- A. 2×10^9
- B. 2×10^{10}
- C. 2×10^{11}
- D. 2×10^{16}
- E. 2×10^{20}

$$15, 16, 17, y, 20, 21, 24, 20$$

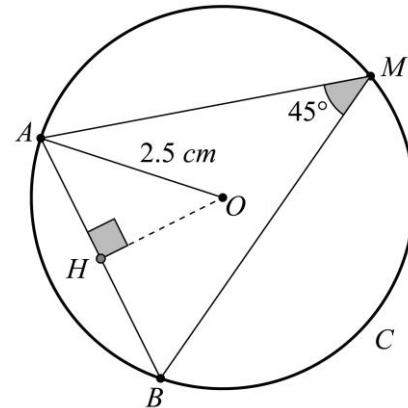
Question 6. If the mean of the dataset above is equal to 20, what is the value of the median?

- A. 18
- B. 19
- C. 20
- D. 21
- E. 22

Question 7. Which of the following functions is the inverse of function p defined by $p(x) = \frac{x-1}{x+2}$?

- A. $p^{-1}(x) = \frac{2x}{1-x}$
- B. $p^{-1}(x) = \frac{x-1}{2x-1}$
- C. $p^{-1}(x) = \frac{2x-1}{x+1}$
- D. $p^{-1}(x) = \frac{1-2x}{1-x}$
- E. $p^{-1}(x) = \frac{2x+1}{1-x}$

Question 8. $2 \sin^2(x) \cdot \sec^2(x) + \tan^2(x) =$


- A. $3 \cot(x)$
- B. $\frac{1}{2} \tan(x)$
- C. $3 \tan^2(x)$
- D. $\cot^2(x)$
- E. $\tan^2(x)$

Question 9. Which of the following statements is/are true for the function f defined by $f(x) = -2|x + 3| + 3$?

- I.** The graph of f has a vertex at $(-3, 3)$.
- II.** The graph of f is a V-shape that opens downward.
- III.** The graph of f passes through $(0, 3)$.

- A.** I only
- B.** II only
- C.** I and II only
- D.** II and III only
- E.** I, II, and III

Question 10. Consider a circle C with center O and radius $r = 2.5 \text{ cm}$. Points M , A , and B lie on C such that $m\angle AMB = 45^\circ$, as shown in the adjacent figure. What is the approximate length of the altitude OH drawn from O to \overline{AB} ? (Figure not drawn to scale)

- A.** 1.521 cm
- B.** 1.611 cm
- C.** 1.768 cm
- D.** 1.823 cm
- E.** 3.295 cm

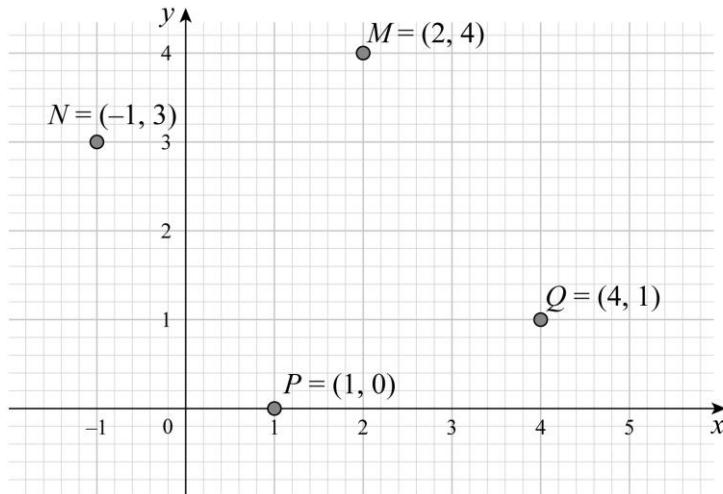
Question 11. A line d with equation $x - y + 3 = 0$ is tangent to a circle C with center $A(m - 3, 2m)$ and radius $\sqrt{2} \text{ cm}$ at $T(0, t)$. Which of the following is the value of m ?

- A.** -2.0
- B.** 1.5
- C.** 2.0
- D.** 3.5
- E.** 4.0

Question 12. The graph of function f defined by $f(x) = \frac{-x+1}{x^2}$ and the straight line D with equation $y = x - 1$ intersect at point I . The coordinates of I are:

- A.** $(1, -1)$
- B.** $(1, 0)$
- C.** $(1, 1)$
- D.** $(-1, -2)$
- E.** $(-1, -1)$

Question 13. C is a circle with center $(-2, 3)$ and radius 5. Line D , with equation $3x + 4y - 31 = 0$, is tangent to C . The coordinates of the point of tangency are:


- A. $(5, 4)$
- B. $(1, 7)$
- C. $(1, 1)$
- D. $(1, -1)$
- E. $(-3, 10)$

Question 14. A security system opens a gate using a code of three digits followed by two letters. The digits chosen from 2, 5, 6, 7, 8, and the letters from A , B , C , and D . If the repetition of digits and letters is not allowed, then the probability that the code includes the digit 6 and the letter A is equal to:

- A. $\frac{1}{10}$
- B. $\frac{2}{10}$
- C. $\frac{3}{10}$
- D. $\frac{4}{10}$
- E. $\frac{5}{10}$

Question 15. Given an equilateral triangle MNP such that $MP = MN = (2x - 5) \text{ cm}$ and $NP = (x + 2) \text{ cm}$, the area of ΔMNP is:

- A. $\frac{81}{2}\sqrt{3} \text{ cm}^2$
- B. $\frac{81}{4}\sqrt{3} \text{ cm}^2$
- C. $\frac{81}{8}\sqrt{3} \text{ cm}^2$
- D. $\frac{9}{2}\sqrt{3} \text{ cm}^2$
- E. $\frac{9}{4}\sqrt{3} \text{ cm}^2$

Question 16. Consider the points M , N , P , and Q shown in the figure above. The quadrilateral $MNPQ$ is a/an:

- A. Isosceles trapezoid
- B. Parallelogram
- C. Rectangle
- D. Rhombus
- E. Square

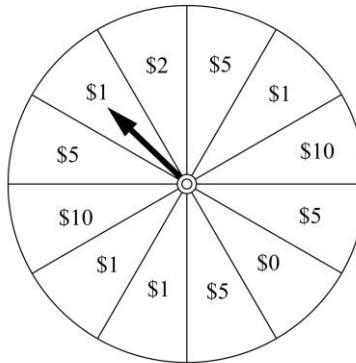
Question 17. Toni allocated a sum of \$1,584 for his graduation. He will be distributing this sum on his haircut, photography, shoes, and suit in the ratio of $2 : 5 : 6 : 9$, respectively. How much will he spend on the suit?

- A. \$144
- B. \$360
- C. \$432
- D. \$520
- E. \$648

Question 18. If f , g , and h are three functions defined by $f(x) = x^3 - 3$, $g(x) = 4x^2 + 1$, and $h(x) = x$, then $(g \circ f \circ h)(x) =$

- A. $4x^6 + 24x^3 + 36$
- B. $4x^6 - 24x^3 + 37$
- C. $4x^5 + 24x^3 - 37$
- D. $4x^5 + 18x^3 + 36$
- E. $4x^5 - 18x^3 + 1$

Question 19. A simplified form of the expression $\frac{20(\sin(x) \cdot \cos(x))}{3} \times \frac{\tan(x) + \cot(x)}{4}$ is:


A. $\frac{5}{3} \sin(x) \cdot \cos(x)$

B. $\cot(x)$

C. $2 \tan(x)$

D. $\frac{5}{3}$

E. $\frac{20}{3}$

Question 20. A spinner is divided into 12 sections labeled \$0, \$1, \$2, \$5, and \$10, as shown in the figure above. If the spinner is spun twice and all sectors have equal probability of landing on the given arrow, what is the probability of obtaining a sum of 10?

A. $\frac{1}{36}$

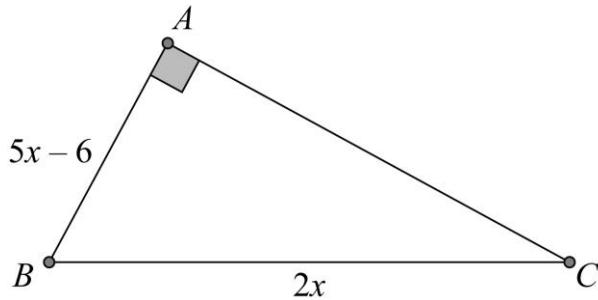
B. $\frac{2}{36}$

C. $\frac{4}{36}$

D. $\frac{5}{36}$

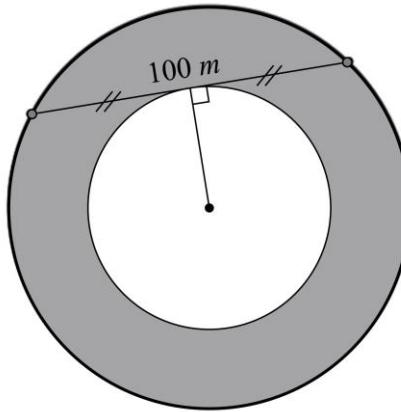
E. $\frac{7}{36}$

Question 21. If $|7 - 4x| > 3x + 1$, which of the following is the solution of the inequality?


A. $x < \frac{7}{6}$

B. $x < \frac{6}{8}$

C. $x < \frac{6}{7}$ or $x > 8$

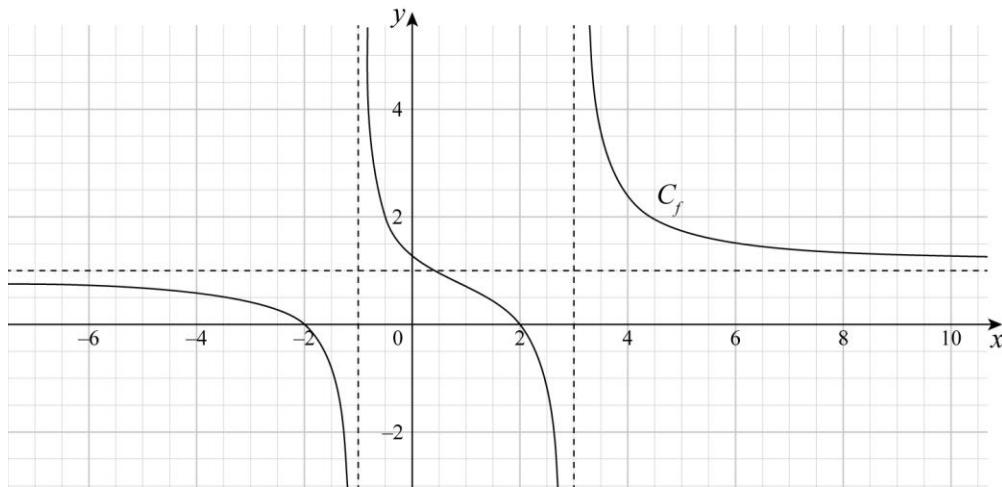

D. $x > 7$

E. $x > \frac{6}{7}$ or $x < 7$

Question 22. ABC is a right triangle as shown in the figure above. If $AB = 5x - 6$ and $BC = 2x$, which of the following is true if ABC is also isosceles? (Figure not drawn to scale)

- A. $x = \frac{6}{7}$
- B. $x = \frac{30-6\sqrt{2}}{23}$
- C. $x = \frac{6}{5}$
- D. $x = 2$
- E. None of the above

Question 23. In the figure above, the area of the shaded part is: (Figure not drawn to scale)


- A. $100\pi m^2$
- B. $250\pi m^2$
- C. $1,000\pi m^2$
- D. $1,250\pi m^2$
- E. $2,500\pi m^2$

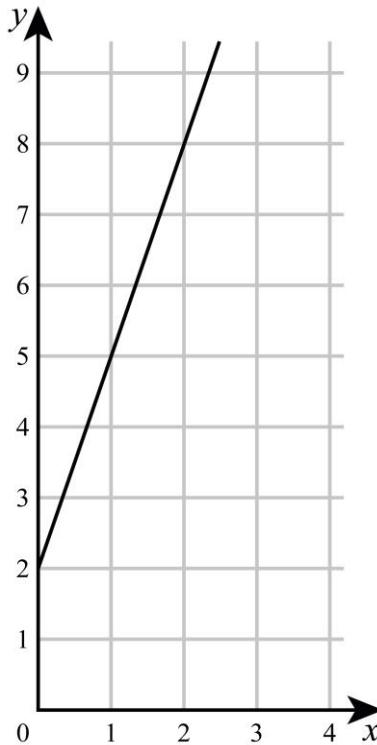
Question 24. A chemist has a solution A that is 30% acid and another solution B that is 60% acid.

How many liters of each solution should be mixed to form 120 liters of a new solution that is 40% acid?

Note: Solution A and Solution B are HCl acids, and their percentage concentrations are given as v/v (volume by volume) to ensure scientific accuracy.

	Volume of solution A	Volume of solution B
A.	88 L	32 L
B.	80 L	40 L
C.	50 L	70 L
D.	30 L	90 L
E.	20 L	100 L

Question 25. In the figure above, the curve C_f represents the graph of a function f . Which of the following rational functions correspond to f ?


A. $\frac{1-x^2}{(x+1)(x-3)}$

B. $\frac{x^2-1}{(x+1)(x-3)}$

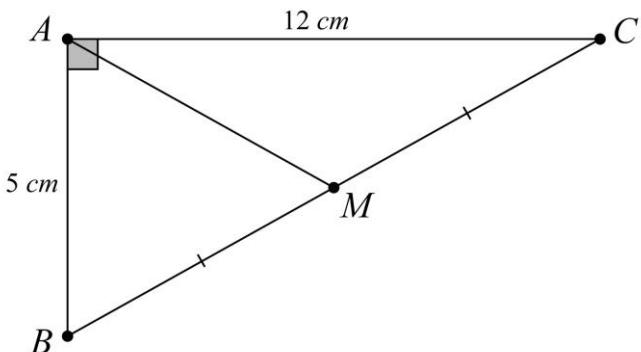
C. $\frac{x^2-4}{(x+1)(x-3)}$

D. $\frac{4-x^2}{(x-1)(x-3)}$

E. $\frac{x^2-4}{(-x+1)(x+3)}$

Question 26. Which of the situations below is best described by the graph above?

- A. A guy starts with \$4 in his account and earns \$3 for every item he sells.
- B. A person pays a fixed fee of \$2 for a taxi ride and an additional \$3 for every mile traveled.
- C. The height of a plant is 2 cm, and it grows by 1 cm every week.
- D. The price of a cup of coffee is \$2, and an additional \$2 is charged for every extra shot.
- E. The temperature is 2 degrees Celsius and rises by 1.5 degrees every hour.


Question 27. Which of the following points does not satisfy the system of inequalities: $\begin{cases} y \geq 2x - 1 \\ y < -x + 4 \end{cases}$?

- A. (0, 0)
- B. (1, 1)
- C. (1, 2)
- D. (2, 3)
- E. (0, 3)

Day	Temperature
Monday	12
Tuesday	14
Wednesday	13
Thursday	11
Friday	x
Saturday	15
Sunday	y

Question 28. The table above shows the temperatures, in degrees Celsius, recorded over a week in a certain village. If the coldest day was Friday, the warmest day was Sunday, the range of temperatures is 6, and the mean temperature is 13, then $(x, y) =$

A. (10, 16)
 B. (13, 19)
 C. (16, 10)
 D. (16, 12)
 E. (18, 14)

Question 29. ABC is a right triangle at A , such that $AB = 5 \text{ cm}$ and $AC = 12 \text{ cm}$. If \overline{AM} is the median relative to \overline{BC} , then AM equals: (Figure not drawn to scale)

A. 3.0 cm
 B. 3.5 cm
 C. 4.5 cm
 D. 5.5 cm
 E. 6.5 cm

Questions 30 – 31 refer to the information below

The following table shows the annual salaries of all 200 employees in a company.

Annual Salary in \$1,000	[5 – 7)	[7 – 9)	[9 – 11)	[11 – 13)	[13 – 15]
Men	45	25	30	20	12
Women	15	20	10	15	8

Question 30. One employee is randomly selected from the company. What is the probability that the employee is a man with an annual salary of at least \$11,000?

A. $\frac{4}{25}$

B. $\frac{32}{132}$

C. $\frac{50}{132}$

D. $\frac{32}{55}$

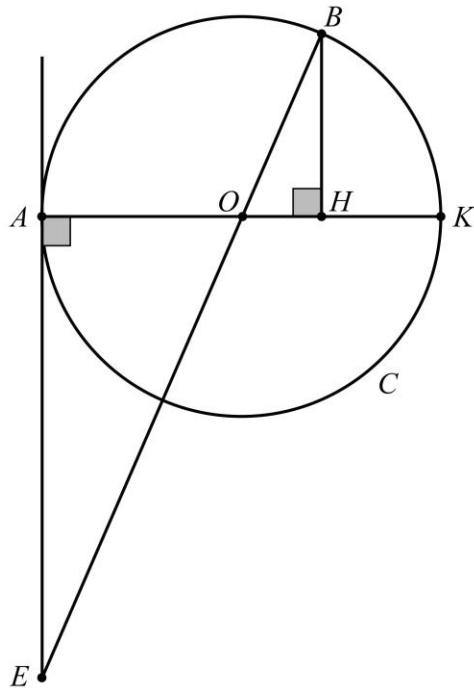
E. $\frac{35}{55}$

Question 31. The HR department is organizing a race featuring five employees, each representing a different salary class. The probability that the representative of the first salary class wins is p . As the salary class goes up, the probability of winning is halved. What is the probability that the employee representing the [5 – 7) class wins?

A. 1

B. $\frac{4}{5}$

C. $\frac{16}{31}$


D. $\frac{1}{2}$

E. $\frac{8}{31}$

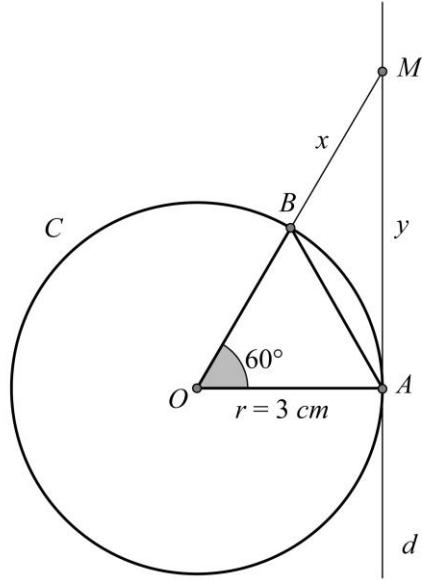
Questions 32 – 33 refer to the information below

In the figure above, C is a circle with center O and radius 4 cm . Point K is diametrically opposite to A with respect to O . \overline{AE} is perpendicular to \overline{OA} . Point H lies on \overline{OK} such that $OH = 1.6\text{ cm}$. Point B lies on C such that \overline{BH} is perpendicular to \overline{OK} . (Figure not drawn to scale)

Question 32. To the nearest tenth, the measure of $\angle OBH$ is:

- A. 22.5°
- B. 23.6°
- C. 24.6°
- D. 25.5°
- E. 26.5°

Question 33. OE is equal to:


- A. 6 cm
- B. 8 cm
- C. 10 cm
- D. 12 cm
- E. 14 cm

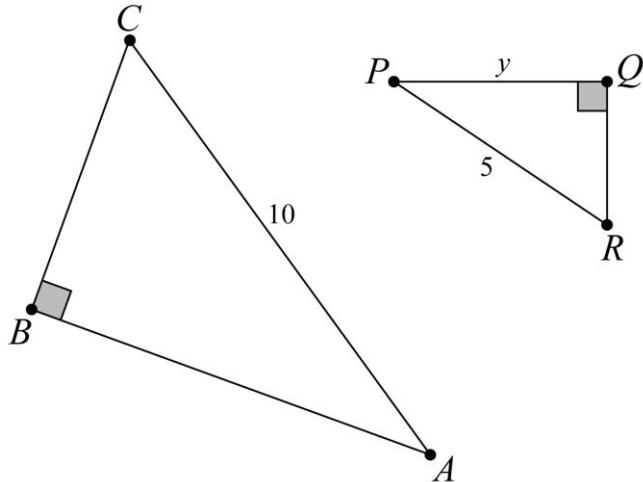
Question 34. Given x and y are 2 natural numbers; if $x^2 = 2^6 \times 3^2 \times 5^4 \times 7^2$ and $y^3 = 2^3 \times 3^9 \times 5^6$, then $GCD(x, y)$ is equal to:

- A. $2 \times 3 \times 5^2$
- B. $2^2 \times 5 \times 3 \times 7$
- C. $2^3 \times 3 \times 7 \times 5^2$
- D. $2^3 \times 3^2 \times 5^2$
- E. $2^3 \times 7 \times 5^2$

Question 35. Using the information in the adjacent figure, the value of $\frac{x}{y}$ is: (Figure not drawn to scale)

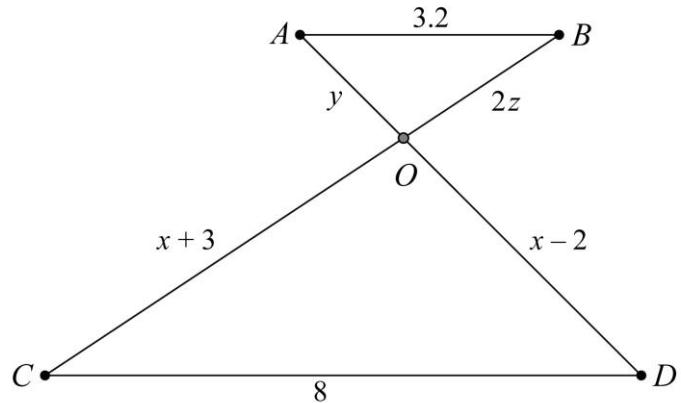
- A. $\frac{1}{\sqrt{3}} \text{ cm}$
- B. $\sqrt{3} \text{ cm}$
- C. $\frac{4}{\sqrt{3}} \text{ cm}$
- D. 3 cm
- E. 6 cm

Question 36. Samir has a number of marbles between 300 and 350. When the marbles are divided into groups of 12 or groups of 18, there are always 3 marbles left. How many marbles does Samir have?


- A. 350
- B. 329
- C. 327
- D. 324
- E. 291

Question 37. A craftsman who works 6 hours per day can complete a given project in 15 days, receiving \$8 per hour. He is asked to finish the project in 10 days. Knowing that he will get a 50% increase on his hourly rate for each day he works more than 6 hours, what is the maximum he will be paid for the project?

- A. \$480
- B. \$840
- C. \$960
- D. \$1,080
- E. \$1,320


Question 38. If \heartsuit is an operation defined by $a \heartsuit b = a^2 - b^2 + 13$, where a and b are real numbers, then the value of $[(3 \heartsuit 1) \heartsuit (-2)] \heartsuit 0$ is:

- A. 202,500
- B. 202,501
- C. 202,510
- D. 202,513
- E. 202,520

Question 39. $\triangle ABC$ and $\triangle PQR$ are similar. What is the ratio of similarity of $\triangle ABC$ to $\triangle PQR$? (Figures not drawn to scale)

- A. 1.50
- B. 1.75
- C. 2.0
- D. 2.50
- E. 3.0

Question 40. \overline{AB} is parallel to \overline{CD} and $x = 7$. What is the value of $y + z$? (Figure not drawn to scale)

- A. 1
- B. 2
- C. 3
- D. 4
- E. 6