

EST II

C H E M I S T R Y

Date:

Test Center:

Room Number:

Student's Name:

National ID:

EST ID:

Duration: 60 minutes

60 Multiple Choice Questions

Instructions:

- Place your answers on the answer sheet. Mark only one answer for each of the multiple-choice questions.
- Avoid guessing. Your answers should reflect your overall understanding of the subject matter.
- Scientific calculators are allowed.
- The periodic table is available at the end of the booklet as a reference.

Remarks

For all questions involving solutions and/or chemical equations, assume that the system is in pure water unless otherwise stated.

Part A

Directions:

- Ⓐ Each set of lettered choices below refers to the numbered statements or questions immediately following it.
- Ⓑ Select the one lettered choice that best fits each statement or answers each question, and then fill in the corresponding oval on the answer sheet.
- Ⓒ A choice may be used once, more than once, or not at all in each set.

Questions 1 – 3 refer to the following elements. Identify the element that matches each description:

- A. Silicon
- B. Nitrogen
- C. Aluminum
- D. Helium

Question 1. The element that has $2Z+1$ as its mass number

Question 2. The element that is chemically stable in nature

Question 3. The element that has 4 valence electrons

Questions 4 – 7 refer to the following bond types. Match each description to the correct bond:

- A. Single covalent bond
- B. Double covalent bond
- C. Triple covalent bond

Question 4. Consists of two pi bonds and one sigma bond

Question 5. Consists of one pi bond and one sigma bond

Question 6. Has the shortest bond length

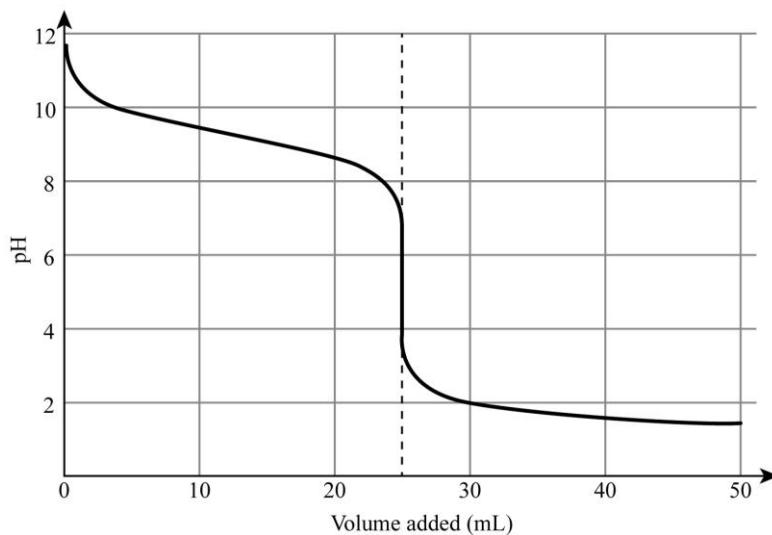
Question 7. Is the strongest covalent bond

Questions 8 – 11 refer to the following ions. Match each ion to its correct name:

- A. Br^-
- B. BrO^-
- C. BrO_2^-
- D. BrO_3^-
- E. BrO_4^-

Question 8. Bromite

Question 9. Bromide


Question 10. Hypobromite

Question 11. Perbromate

Questions 12 – 14 refer to the titration curve below:

- A. NH_3
- B. NH_4^+
- C. HCl
- D. NH_4Cl
- E. H_2O

Question 12. The titrant

Question 13. The titrate

Question 14. The reactants that remains in excess after the equivalence point

Questions 15 – 18 refer to the pictograms below. Match each description to the correct symbol:

A.

B.

C.

D.

E.

Question 15. May cause death or serious poisoning after brief exposure to a small amount

Question 16. May lead to serious health issues or is believed to pose significant health risks

Question 17. May explode and self-react in a confined place

Question 18. May self-ignite when exposed to water or air

Part B

Directions:

- Each of the questions or incomplete statements below is followed by five suggested answers or completions.
- Select the one that is best in each case, and then fill in the corresponding oval on the answer sheet.

Question 19. When 67.3 g of butanal (C_4H_8O) are mixed with 14.6 g of ethanoic acid ($C_2H_4O_2$), the mole percent of butanal in the mixture is:

- A. 93.33%
- B. 85.35%
- C. 79.36%
- D. 24.30%
- E. 20.68%

Question 20. What mass of $CuSO_4 \cdot 5H_2O$ should be weighed to obtain 35 g of $CuSO_4$ in 1 L?

- A. 35 g
- B. 53 g
- C. 54.75 g
- D. 159.61 g
- E. 177.61 g

Questions 21 – 22 refer to the following reaction.

Question 21. 0.035 mol of Cl_2 were released when 0.09 mol of NOCl was decomposed. The reaction quotient is:

- A. 0.23
- B. 0.43
- C. 1.23
- D. 8.58×10^{-3}
- E. 5.85×10^{-3}

Question 22. At time t , the reaction will:

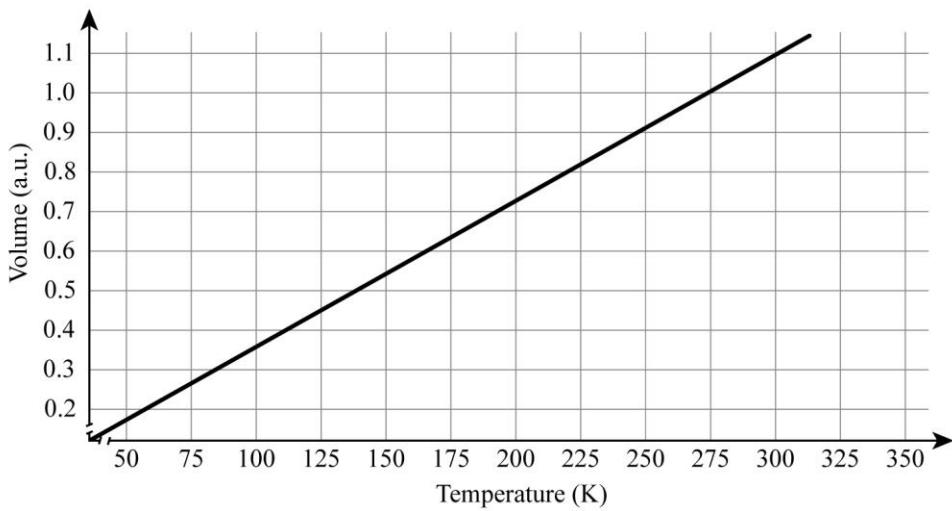
- A. Shift in the reverse direction
- B. Shift in the forward direction
- C. Shift in both directions
- D. Be at equilibrium
- E. Not take place

Question 23. What is the main cause of corrosion in metals?

- A. Reaction with oxygen and moisture
- B. Exposure to sunlight
- C. High temperatures
- D. Acidic environment
- E. Contact with other metals

Question 24. The titration of 50 mL of 0.2 M NaOH with 0.1 M H₂SO₄ is performed. The volume of H₂SO₄ at the equivalence point is:

- A. 12.5 mL
- B. 25.0 mL
- C. 37.5 mL
- D. 50.0 mL
- E. 100.0 mL


Question 25. Equal volumes of a 3.9×10^{-5} mol·L⁻¹ magnesium hydroxide solution (Solution A) and a saturated magnesium hydroxide solution with $K_{sp} = 1.8 \times 10^{-11}$ (Solution B) are mixed. The final pH of the combined solution is:

- A. 1.8
- B. 5.0
- C. 12.5
- D. 11.0
- E. 10.3

Questions 26 – 27 refer to the following graph.

Question 26. This graph represents:

- A. Charle's Law
- B. Boyle's Law
- C. Gay-Lussac's Law
- D. Henri's Law
- E. Avogadro's Law

Question 27. What would be the volume at 568 K?

- A. 1.50
- B. 1.85
- C. 2.05
- D. 2.50
- E. 3.00

Questions 28 – 29 refer to the bond energies table.

Bond	C–H	C–Cl	Cl–Cl	O–H	H–Cl	C–O
Bond Energy (kJ.mol ⁻¹)	415	330	240	460	340	358

Question 28. The enthalpy change for the reaction $\text{CH}_3\text{OH} + \text{Cl}_2 \rightarrow \text{CH}_2\text{ClOH} + \text{HCl}$ is:

- A. -215 kJ.mol^{-1}
- B. -15 kJ.mol^{-1}
- C. -75 kJ.mol^{-1}
- D. $+60 \text{ kJ.mol}^{-1}$
- E. $+120 \text{ kJ.mol}^{-1}$

Question 29. The reaction is:

- A. Strongly exothermic
- B. Mildly exothermic
- C. Athermic
- D. Mildly endothermic
- E. Strongly endothermic

Question 30. A 120 g piece of metal at 250°C is placed in 300 g of water at 20°C. The system reaches an equilibrium temperature of 28°C. What is the specific heat capacity of the metal?

- A. $0.25 \text{ J.g}^{-1}.\text{°C}^{-1}$
- B. $0.38 \text{ J.g}^{-1}.\text{°C}^{-1}$
- C. $0.46 \text{ J.g}^{-1}.\text{°C}^{-1}$
- D. $0.52 \text{ J.g}^{-1}.\text{°C}^{-1}$
- E. $0.67 \text{ J.g}^{-1}.\text{°C}^{-1}$

Question 31. Given the following reaction:

Calculate the enthalpy change ΔH (in kJ) for the reaction: $\text{SO}_{2(\text{g})} + \frac{1}{2} \text{O}_{2(\text{g})} \rightarrow \text{SO}_{3(\text{g})}$

- A. -99.2 kJ
- B. -148.4 kJ
- C. -198.4 kJ
- D. $+99.2 \text{ kJ}$
- E. $+198.4 \text{ kJ}$

Question 32. A 2.3 L sealed container at 42.9°C contains 3.8 grams of COCl_2 and an unknown mass of argon gas. The total pressure in the container is 5.5 atm. The mass of argon gas present is:

- A. 18 g
- B. 15 g
- C. 12 g
- D. 9 g
- E. 27 g

Question 33. Four cylinders each contain a gas mixture at a total pressure of 5 atm and a temperature of 320 K. Each cylinder contains exactly 2 moles of N_2 and 1 mole of another gas:

Cylinders	A	B	C	D
Mixture	$\text{N}_2 + \text{SO}_2$	$\text{N}_2 + \text{NO}_2$	$\text{N}_2 + \text{PH}_3$	$\text{N}_2 + \text{Br}_2$

Which cylinder contains the gas mixture with the highest density?

- A. Cylinder A
- B. Cylinder B
- C. Cylinder C
- D. Cylinder D
- E. All cylinders have identical densities.

Question 34. Which reaction would proceed faster at the same temperature, and why?

- A. Reaction A, because it has a lower activation energy.
- B. Reaction B, because it has a lower activation energy.
- C. Reaction A, because it is more exothermic.
- D. Reaction B, because it is more endothermic.
- E. They would proceed at the same rate.

Questions 35 – 36 refer to the experiments.

The reaction between hydrogen peroxide and iodide ions in acidic solution is:

Experiment	[H ₂ O ₂]	[I ⁻]	[H ⁺]	Initial Rate
1	0.10	0.10	0.10	2.0×10^{-4}
2	0.20	0.10	0.10	4.0×10^{-4}
3	0.10	0.20	0.10	4.0×10^{-4}
4	0.10	0.10	0.20	8.0×10^{-4}

Question 35. Using the data above, what is the correct rate law for this reaction?

- A. Rate = k[H₂O₂][I⁻][H⁺]
- B. Rate = k[H₂O₂][I⁻][H⁺]²
- C. Rate = k[H₂O₂][I⁻]²[H⁺]
- D. Rate = k[H₂O₂]²[I⁻][H⁺]
- E. Rate = k[H₂O₂][H⁺]

Question 36. The value of the rate constant is:

- A. $k = 0.5 \text{ M}^{-3} \cdot \text{s}^{-1}$
- B. $k = 1.0 \text{ M}^{-3} \cdot \text{s}^{-1}$
- C. $k = 2.0 \text{ M}^{-3} \cdot \text{s}^{-1}$
- D. $k = 4.0 \text{ M}^{-3} \cdot \text{s}^{-1}$
- E. $k = 8.0 \text{ M}^{-3} \cdot \text{s}^{-1}$

Question 37. The total pressure in a 5 L container at 300 K is 4.5 atm. It contains 0.51 moles of NO₂ and 8.96 L of CO₂ at STP. The partial pressure of NO₂ and CO₂ are, respectively:

- A. 2.52 atm; 1.98 atm
- B. 2.04 atm; 2.46 atm
- C. 1.50 atm; 3.00 atm
- D. 3.00 atm; 1.50 atm
- E. 2.25 atm; 2.25 atm

Question 38. Which of the following compounds is polar?

- A. SF₆
- B. OCS
- C. IF₅
- D. Both A and C
- E. Both B and C

Question 39. Which of the following molecules exhibits dipole-dipole interactions as a significant intermolecular force?

- A. NOCl
- B. OCS
- C. CO₂
- D. CF₄
- E. Both A and B

Question 40. The $[\text{OH}^-]$ of a solution increases by a factor of 100. How does the pH change?

- A. It increases from 6 to 9.
- B. It increases from 8 to 10.
- C. It decreases from 8 to 6.
- D. It decreases from 10 to 7.
- E. It remains constant.

Question 41. An element belongs to period 4 and group 1. Which property is it most likely to exhibit?

- A. High reactivity with water
- B. Colorless gas at room temperature
- C. Completely unreactive
- D. Low melting point but nonmetallic
- E. Strong acidity

Question 42. Why is sodium more reactive than lithium?

- A. Sodium's outer electron is easier to remove.
- B. Sodium has fewer protons.
- C. Sodium has more neutrons.
- D. Sodium has fewer electrons.
- E. Sodium forms a different type of bond.

Question 43. Which trend increases from left to right across a period?

- A. Atomic radius
- B. Metallic character
- C. Electronegativity
- D. Reactivity of metals
- E. Ionic radius of metals

Question 44. Which principle states that no two electrons in an atom can have the same set of quantum numbers?

- A. Aufbau principle
- B. Hund's rule
- C. Pauli exclusion principle
- D. Heisenberg uncertainty principle
- E. Bohr's postulate

Question 45. Which of the following ions has the same electron configuration as neon?

- A. Na^+
- B. O^{2-}
- C. F^-
- D. Al^{3+}
- E. All of the above

Question 46. What is the set of quantum numbers for the last electron in phosphorus?

- A. $n = 3, l = 1, m_l = 0, m_s = +\frac{1}{2}$
- B. $n = 3, l = 2, m_l = 1, m_s = -\frac{1}{2}$
- C. $n = 2, l = 1, m_l = 0, m_s = -\frac{1}{2}$
- D. $n = 3, l = 1, m_l = 1, m_s = +\frac{1}{2}$
- E. $n = 3, l = 0, m_l = 0, m_s = +\frac{1}{2}$

Question 47. Which molecule has a bond angle closest to 109.5° ?

- A. SF_2
- B. SeH_2
- C. ClF_3
- D. PF_3
- E. XeF_2

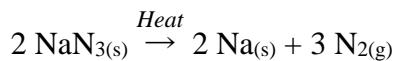
Question 48. A small amount of AgNO_3 is accidentally spilled into an unknown solution X, contaminating it. What could solution X be, and which separation method would best confirm and remove the contamination?

- A. X: NaOH ; Separation method: distillation
- B. X: HCl ; Separation method: filtration
- C. X: BaCl_2 ; Separation method: decantation
- D. X: NH_4OH ; Separation method: centrifugation
- E. X: K_2CrO_4 ; Separation method: distillation

Question 49. Fe_2O_3 is the chemical formula of the rust formed due to the exposure of iron to humidity. The ionic form of iron in rust is:

- A. Fe^+
- B. Fe^{2+}
- C. Fe
- D. Fe^{3-}
- E. Fe^{3+}

Question 50. A student measures a mass repeatedly and gets very similar results each time, but they are all 0.5 g higher than the actual mass. Which statement is correct?


- A. High accuracy, low precision
- B. Low accuracy, high precision
- C. High accuracy, high precision
- D. Low accuracy, low precision
- E. Cannot be determined

Question 51. Which of the following balanced chemical equations represents an oxidation–reduction reaction?

- A. $\text{HCl}_{(\text{aq})} + \text{NaOH}_{(\text{aq})} \rightarrow \text{NaCl}_{(\text{aq})} + \text{H}_2\text{O}_{(\text{l})}$
- B. $\text{BaCl}_{2(\text{aq})} + \text{Na}_2\text{SO}_{4(\text{aq})} \rightarrow \text{BaSO}_{4(\text{s})} + 2 \text{NaCl}_{(\text{aq})}$
- C. $\text{Zn}_{(\text{s})} + \text{CuSO}_{4(\text{aq})} \rightarrow \text{ZnSO}_{4(\text{aq})} + \text{Cu}_{(\text{s})}$
- D. $\text{NH}_4\text{Cl}_{(\text{s})} \rightarrow \text{NH}_{3(\text{g})} + \text{HCl}_{(\text{g})}$
- E. $\text{Na}_2\text{CO}_{3(\text{aq})} + 2 \text{HCl}_{(\text{aq})} \rightarrow 2 \text{NaCl}_{(\text{aq})} + \text{H}_2\text{O}_{(\text{l})} + \text{CO}_{2(\text{g})}$

Question 52. A student heats 1.74 g of pure NaN_3 and collects nitrogen gas with an actual yield of 75%. What mass of N_2 gas is actually obtained?

Given:

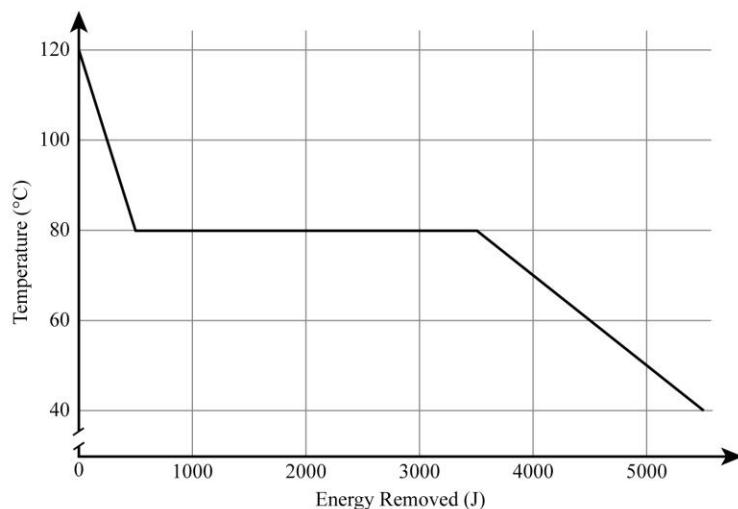
- A. 0.84 g
- B. 0.90 g
- C. 0.94 g
- D. 1.12 g
- E. 1.35 g

Question 53. A chemist mixes 1.80 mol of PCl_3 and 2.50 mol of Cl_2 : $\text{PCl}_{3(\text{l})} + \text{Cl}_{2(\text{g})} \rightarrow \text{PCl}_{5(\text{s})}$

Assuming complete reaction, what is the maximum number of molecules of PCl_5 that can form?

- A. 1.08×10^{24}
- B. 1.51×10^{24}
- C. 2.17×10^{24}
- D. 2.71×10^{24}
- E. 3.01×10^{24}

Question 54. Consider the following reversible reaction at equilibrium in a closed container:



Which of the following changes will shift the position of equilibrium in the reverse direction?

- I.** Increasing the temperature
- II.** Increasing the total pressure
- III.** Adding more NO_2 gas

- A.** I only
- B.** II only
- C.** III only
- D.** II and III
- E.** I and III

Question 55. The cooling curve of a 17 g substance is given below:

How much energy must be removed to completely condense 68 g of the same vapor, starting at its condensation temperature of 80°C?

- A.** 1500 J
- B.** 3000 J
- C.** 6000 J
- D.** 9000 J
- E.** 12000 J

Question 56. A 3.18 L sample of an ideal gas is at a pressure of 1.27 atm and a temperature of 363 K. The gas is heated at constant volume until its pressure increases to 2.49 atm. What is the final temperature of the gas?

- A.** 1132 K
- B.** 712 K
- C.** 467 K
- D.** 363 K
- E.** 185 K

Question 57. Which of the following will cause the largest decrease in the freezing point of water, assuming the same mass of each solute is dissolved in the same amount of water?

- A. $\text{C}_6\text{H}_{12}\text{O}_6$
- B. NaCl
- C. $\text{C}_{12}\text{H}_{22}\text{O}_{11}$
- D. NH_2CONH_2
- E. Since they have the same mass, they have the same effect.

Questions 58 – 60 refer to the combustion analysis of an organic compound.

The combustion analysis of an organic compound shows it contains 54.5% C, 9.1% H, and 36.4% O by mass.

Question 58. What is the empirical formula of the compound based on the given percent composition?

- A. CH_2O
- B. $\text{C}_2\text{H}_4\text{O}$
- C. $\text{C}_3\text{H}_6\text{O}_3$
- D. $\text{C}_2\text{H}_6\text{O}$
- E. CHO

Question 59. Which set of coefficients balances the complete combustion of the compound according to the following equation: $_{\text{C}_x\text{H}_y\text{O}_z} + _{\text{O}_2} \rightarrow _{\text{CO}_2} + _{\text{H}_2\text{O}}$?

- A. 2, 5, 4, 4
- B. 4, 4, 5, 2
- C. 1, 3, 2, 2
- D. 2, 2, 3, 1
- E. 1, 2, 1, 1

Question 60. In an experiment, 12.0 g of the compound is combusted, and 17.6 g of CO_2 is collected. What is the percent yield of CO_2 ?

- A. 24.1%
- B. 37.3%
- C. 59.9%
- D. 73.3%
- E. 91.2%

Periodic Table of the Elements

		VIIIA																		
		IA		IIA		IIIA		IVA		VA		VIA		VIIA		VIIIA				
		H		Li		Be		B		C		N		O		F		Ne		
		Hydrogen 1.008		Lithium 6.94		Beryllium 9.012831		Boron 10.81		Carbon 12.01		Nitrogen 14.017		Oxygen 15.999		Fluorine 18.998403183		Neon 20.1797		
1	H			3	Li	4	Be	5	B	6	C	7	N	8	O	9	F	10	He	
2				11	Na	12	Mg	13		14		15		16		17		18	He	
				19	K	20	Ca	21	Sc	22	Ti	23	Cr	24	Mn	25	Fe	26		
				Potassium 39.0983		Calcium 40.078		Scandium 44.95988		Titanium 47.867		Vanadium 50.9415		Chromium 51.9861		Manganese 54.98044		Iron 55.845		
				37	Rb	38	Sr	39	Y	40	Zr	41	Nb	42	Mo	43	Tc	44		
				Rubidium 65.4678		Strontrium 87.9122		Yttrium 88.9054		Zirconium 91.224		Niobium 92.8537		Molybdenum 95.95		Technetium 97.967		Ruthenium 101.07		
				55	Cs	56	Ba	57	Hf	72	Ta	73	W	74	Re	75	Os	76		
				Caesium 132.9054596		Baerium 137.327		Lanthanoids 137.327		Hafnium 178.49		Tantalum 180.9478		Tungsten 183.44		Rhenium 185.207		Osmium 189.23		
				87	Fr	88	Ra	89 - 103	Rf	104	Db	105	Sg	106	Bh	107	Hs	108		
				Actinium (227)		Radium (226)		Actinoids (267)		Rutherfordium (269)		Dubnium (289)		Seaborgium (289)		Berkelium (290)		Hassium (299)		
				57	La	58	Ce	59	Pr	60	Nd	61	Pm	62	Sm	63	Eu	64	Gd	
				Lanthanum 138.90647		Cerium 140.015		Praseodymium 140.90766		Neodymium 144.242		Promethium (145)		Samarium 150.36		Europium 151.984		Gadolinium 152.25		Terbium 158.9253
				89	Ac	90	Th	91	Pa	92	U	93	Np	94	Pu	95	Am	96	Cm	
				Actininium (227)		Thorium 232.0337		Protactinium 238.0289		Uranium (237)		Neptunium (237)		Plutonium (239)		Americium (243)		Curium (247)		Berkelium (247)
				97	Bk	98	Cf	99	Es	100	Fm	101	Md	102	No	103	Lr			